### organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# (+)-(1*R*,2*S*,3*S*,4*S*)-2-Chloro-3-(phenyl-selanyl)cyclohexane-1,4-diol

## Tony V. Robinson,<sup>a</sup> Dennis K. Taylor<sup>b</sup>‡ and Edward R. T. Tiekink<sup>c</sup>\*

<sup>a</sup>Department of Chemistry, The University of Adelaide, 5005 South Australia, Australia, <sup>b</sup>Department of Wine and Horticulture, The University of Adelaide, Waite Campus, Glen Osmond 5064, South Australia, Australia, and <sup>c</sup>Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA

Correspondence e-mail: edward.tiekink@utsa.edu

Received 17 June 2007; accepted 25 June 2007

Key indicators: single-crystal X-ray study; T = 223 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.029; wR factor = 0.077; data-to-parameter ratio = 19.3.

The cyclohexyl ring in the title compound,  $C_{12}H_{15}ClO_2Se$ , has a chair conformation with the 4-hydroxy group occupying an axial position; the other non-H substituents occupy equatorial positions. Molecules aggregate *via* O-H···O hydrogen bonds into a supramolecular helical chain.

#### **Related literature**

For related literature, see: Clive *et al.* (1977); Engman (1989); Greatrex *et al.* (2003); Ho & Kolt (1982); Nicolaou *et al.* (1979); Robinson *et al.* (2006); Tiecco *et al.* (1988); Toshimitsu *et al.* (1981, 1985).



#### **Experimental**

#### Crystal data

 $\begin{array}{l} C_{12}H_{15}ClO_{2}Se\\ M_{r}=305.65\\ Monoclinic, P2_{1}/c\\ a=13.5529~(10)\ \text{\AA}\\ b=7.0627~(5)\ \text{\AA}\\ c=12.9203~(9)\ \text{\AA}\\ \beta=95.443~(1)^{\circ} \end{array}$ 

 $V = 1231.16 (15) Å^{3}$  Z = 4Mo K\alpha radiation  $\mu = 3.25 \text{ mm}^{-1}$  T = 223 (2) K $0.47 \times 0.18 \times 0.16 \text{ mm}$ 

#### Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000)

 $T_{\min} = 0.857, T_{\max} = 1$  2832 independent reflections (expected range = 0.510–0.595) 2524 reflections with  $I > 2\sigma(I)$ 8348 measured reflections  $R_{int} = 0.025$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.029$ | 147 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.077$               | H-atom parameters constrained                              |
| S = 1.07                        | $\Delta \rho_{\rm max} = 0.61 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 2832 reflections                | $\Delta \rho_{\rm min} = -0.31 \ {\rm e} \ {\rm \AA}^{-3}$ |
|                                 |                                                            |

### Table 1Hydrogen-bond geometry (Å, °).

| $D = H \cdots A$        | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-------------------------|------|-------------------------|--------------|---------------------------|
| O1-H1···O4 <sup>i</sup> | 0.83 | 1.91                    | 2.737 (2)    | 174                       |
| $O4-H4\cdots O1^{ii}$   | 0.83 | 1.91                    | 2.744 (2)    | 178                       |

Symmetry codes: (i) -x + 1,  $y + \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (ii) x, y - 1, z.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *SHELXL97*.

We are grateful to the Australian Research Council for financial support. TVR thanks the Commonwealth Government of Australia for support in the form of a scholarship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2241).

#### References

- Altomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–435.
- Brandenburg, K. (2006). *DIAMOND*. Release 3.1. Crystal Impact GbR, Bonn, Germany.
- Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.
- Clive, D. L. J., Chittattu, G., Curtis, N. J., Kiel, W. A. & Wong, C. K. (1977). *Chem. Commun.* pp. 725–727.
- Engman, L. (1989). J. Org. Chem. 54, 884-890.
- Greatrex, B. W., Jenkins, N. F., Taylor, D. K. & Tiekink, E. R. T. (2003). J. Org. Chem. 68, 5205–5210.
- Ho, P. T. & Kolt, R. J. (1982). Can. J. Chem. 1982, 60, 663-666.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Nicolaou, K. C., Claremon, D. A., Barnette, W. E. & Seitz, S. P. (1979). J. Am. Chem. Soc. 101, 3704–3706.
- Robinson, T. V., Taylor, D. K. & Tiekink, E. R. T. (2006). J. Org. Chem. 71, 7236–7244.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Tiecco, M., Testaferri, L., Tingoli, M., Chianelli, D. & Bartoli, D. (1988). *Tetrahedron*, 44, 2261–2272.
- Toshimitsu, A., Aoai, T., Owada, H., Uemura, S. & Okana, M. (1981). J. Org. Chem. 1981, 46, 4727–4733.
- Toshimitsu, A., Aoai, T., Owada, H., Uemura, S. & Okana, M. (1985). *Tetrahedron*, **41**, 5301–5306.

‡ Additional correspondence author; e-mail: dennis.taylor@adelaide.edu.au.

Acta Cryst. (2007). E63, o3350 [doi:10.1107/S1600536807030851]

#### (+)-(1R,2S,3S,4S)-2-Chloro-3-(phenylselanyl)cyclohexane-1,4-diol

#### T. V. Robinson, D. K. Taylor and E. R. T. Tiekink

#### Comment

Recently, we reported the application of epoxidation and dihydroxylation to the olefinic portion of 1,2-dioxines, giving modified 1,2-dioxines, which were subsequently converted into novel epoxy hydroxy ketones, and sugar-type derivatives (Greatrex *et al.*, 2003; Robinson *et al.*, 2006). In the course of investigating other useful electrophilic additions, we attempted addition of phenylselenenyl chloride across the alkene of the bicyclic peroxide 2,3-dioxa-bicyclo[2.2.2]oct-7-ene. Such additions have been well documented on other alkene bearing organic compounds (Engman, 1989; Toshimitsu *et al.*, 1981, 1985), generally giving *trans*-1,2-phenylselenyl chloro adducts (Ho & Kolt, 1982; Clive *et al.*, 1977), or in the presence of other nucleophiles, such as water or methanol, phenylselenenyl alkoxide adducts can be formed (Nicolaou *et al.*, 1979; Tiecco *et al.*, 1988). Interestingly, addition of phenylselenenyl chloride to the peroxide was accompanied by simultaneous reduction of the peroxide bond to give the cyclohexyl-1,4-diol, (I). Also, even though the reaction was performed in methanol, no displacement of the halogen was observed.

The molecular structure of (I) (Fig. 1) shows the cyclohexyl ring to adopt a chair conformation with the Se, Cl, O1 and O4 substituents occupying equatorial, equatorial, and axial positions, respectively. The Se— $C_{phenyl}$  bond is shorter than the Se— $C_{methine}$  bond and the geometry about the Se atom is bent (Table 1). Molecules aggregate in the crystal structure *via* O—H···O hydrogen bonds to form a supramolecular chain (Table 2). The chain is propagated by the screw axis and thus has a helical topology (Fig. 2). Interactions between chains are of the type  $\pi$ ··· $\pi$ . Phenyl substituents are interdigitated along the *b* axis; the *Cg*···*Cg* distance is 3.7545 (14) Å for symmetry operation -x, -y, -z. However, as seen from Fig. 3, the aromatic rings overlap only partially with the closest approach involving the C31 and C33 atoms at 3.369 (3) Å.

#### Experimental

To a stirred solution of 2,3-dioxa-bicyclo[2.2.2]oct-7-ene (100 mg, 0.9 mmol) in anhydrous methanol (5 ml) was added phenylselenenyl chloride (205 mg, 1.08 mmol) and the solution stirred under an atmosphere of N<sub>2</sub> until reaction was complete, by TLC (*ca* 16 h). The reaction mixture was then diluted with dichloromethane (50 ml), washed with sat. sodium bicarbonate solution (2 *x* 25 ml), followed by brine (20 ml) and dried (Na<sub>2</sub>SO<sub>4</sub>). The solvent was removed *in vacuo*, and the residue purified by flash chromatography to give (I) as a white solid. The pure material was recrystallized from a slowly evaporating mixture of 1:1 dichloromethane/heptane to give colourless prisms (204 mg, 75%); m.p. 381–382 K. *R*<sub>f</sub> 0.26 (2:3 ethyl acetate/hexane). Elemental analysis found: C 47.15, H, 4.95%; C<sub>12</sub>H<sub>15</sub>ClO<sub>2</sub>Se requires: C 47.26, H, 5.02%. IR (nujol) 3297, 1581, 1506, 1330, 1046, 1000 cm<sup>-1. 1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  1.49–1.55 (m, 1H), 1.87–1.95 (m, 2H), 2.05 (dddd, J = 3.6, 3.6, 7.8, 14.4 Hz, 1H), 2.46 (br s, 2H), 3.44 (dd, J = 2.4, 11.4 Hz, 1H), 3.65 (ddd, J = 6.3, 9.0, 10.2 Hz, 1H), 3.85 (ddd, J = 2.4, 2.4, 3.6 Hz, 1H), 4.13 (dd, J = 9.0, 11.4 Hz, 1H), 7.29–7.36 (m, 3H), 7.63–7.66 (m, 2H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>):  $\delta$  25.7, 28.6, 56.9, 66.1, 66.1, 75.4, 127.6, 128.5, 129.5, 137.2. MS m/z (+EI): 308 ( $M^+$ , <sup>37</sup>Cl, 23), 306 ( $M^+$ , <sup>35</sup>Cl, 52), 158 (100), 131 (31), 113 (24), 77 (61), 67 (84).

#### Refinement

All H atoms were included in the riding-model approximation, with C—H = 0.94 to 0.99 Å and O—H = 0.83 Å, and with  $U_{iso}(H) = 1.2U_{eq}(C)$  and  $U_{iso}(H) = 1.5U_{eq}(O)$ .

#### Figures



Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.



Fig. 2. View of the supramolecular chain in (I) mediated by hydrogen bonds, shown as orange-dashed lines. Colour code: yellow (selenium), cyan (chloride), red (oxygen), grey (carbon) and green (hydrogen).



Fig. 3. View of the unit-cell contents of (I) down the *b* axis. Hydrogen bonding (O—H···O) contacts are shown as orange-dashed lines.

#### (+)-(1R,2S,3S,4S)-2-Chloro-3-(phenylselanyl)cyclohexane-1,4-diol

| Crystal data                                        |
|-----------------------------------------------------|
| C <sub>12</sub> H <sub>15</sub> ClO <sub>2</sub> Se |
| $M_r = 305.65$                                      |
| Monoclinic, $P2_1/c$                                |
| Hall symbol: -P 2ybc                                |
| a = 13.5529 (10)  Å                                 |
| b = 7.0627 (5)  Å                                   |

 $F_{000} = 616$   $D_x = 1.649 \text{ Mg m}^{-3}$ Mo Ka radiation  $\lambda = 0.71069 \text{ Å}$ Cell parameters from 2654 reflections  $\theta = 2.3-29.0^{\circ}$  $\mu = 3.25 \text{ mm}^{-1}$ 

| c = 12.9203 (9)  Å             | T = 223 (2)  K                            |
|--------------------------------|-------------------------------------------|
| $\beta = 95.443 (1)^{\circ}$   | Block, colourless                         |
| $V = 1231.16 (15) \text{ Å}^3$ | $0.47 \times 0.18 \times 0.16 \text{ mm}$ |
| Z = 4                          |                                           |

Data collection

| Bruker SMART CCD<br>diffractometer                          | 2832 independent reflections           |
|-------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                    | 2524 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                     | $R_{\rm int} = 0.025$                  |
| T = 223(2)  K                                               | $\theta_{\text{max}} = 27.5^{\circ}$   |
| ω scans                                                     | $\theta_{\min} = 1.5^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Bruker, 2000) | $h = -17 \rightarrow 17$               |
| $T_{\min} = 0.857, \ T_{\max} = 1$                          | $k = -9 \rightarrow 7$                 |
| 8348 measured reflections                                   | $l = -14 \rightarrow 16$               |

#### Refinement

| Refinement on $F^2$                                    | Secondary atom site location: difference Fourier map                                |
|--------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                             | Hydrogen site location: inferred from neighbouring sites                            |
| $R[F^2 > 2\sigma(F^2)] = 0.029$                        | H-atom parameters constrained                                                       |
| $wR(F^2) = 0.077$                                      | $w = 1/[\sigma^2(F_o^2) + (0.0442P)^2 + 0.3384P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.07                                        | $(\Delta/\sigma)_{\rm max} < 0.001$                                                 |
| 2832 reflections                                       | $\Delta \rho_{max} = 0.61 \text{ e } \text{\AA}^{-3}$                               |
| 147 parameters                                         | $\Delta \rho_{min} = -0.31 \text{ e } \text{\AA}^{-3}$                              |
| Primary atom site location: structure-invariant direct |                                                                                     |

Primary atom site location: structure-invariant direct methods Extinction correction: none

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x             | у           | Ζ             | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|---------------|-------------|---------------|---------------------------|
| Se3 | 0.223073 (15) | 0.05198 (3) | 0.126906 (17) | 0.02977 (9)               |

| Cl2 | 0.26790 (4)   | 0.52886 (7)   | 0.17758 (4)   | 0.03242 (13) |
|-----|---------------|---------------|---------------|--------------|
| 01  | 0.44699 (11)  | 0.57891 (19)  | 0.33447 (12)  | 0.0285 (3)   |
| H1  | 0.4960        | 0.5419        | 0.3061        | 0.043*       |
| O4  | 0.40103 (11)  | -0.05964 (19) | 0.26849 (13)  | 0.0302 (3)   |
| H4  | 0.4139        | -0.1691       | 0.2890        | 0.045*       |
| C1  | 0.38350 (15)  | 0.4218 (3)    | 0.34966 (16)  | 0.0247 (4)   |
| H1A | 0.3289        | 0.4669        | 0.3891        | 0.030*       |
| C2  | 0.33780 (14)  | 0.3428 (3)    | 0.24551 (15)  | 0.0220 (4)   |
| H2  | 0.3920        | 0.3041        | 0.2038        | 0.026*       |
| C3  | 0.27180 (14)  | 0.1719 (3)    | 0.25939 (15)  | 0.0232 (4)   |
| Н3  | 0.2138        | 0.2144        | 0.2944        | 0.028*       |
| C4  | 0.32598 (15)  | 0.0194 (3)    | 0.32663 (17)  | 0.0264 (4)   |
| H4A | 0.2783        | -0.0814       | 0.3407        | 0.032*       |
| C5  | 0.37069 (17)  | 0.1005 (3)    | 0.42939 (17)  | 0.0314 (4)   |
| H5A | 0.4083        | 0.0014        | 0.4689        | 0.038*       |
| H5B | 0.3173        | 0.1422        | 0.4702        | 0.038*       |
| C6  | 0.43905 (16)  | 0.2672 (3)    | 0.41313 (16)  | 0.0296 (4)   |
| H6A | 0.4651        | 0.3184        | 0.4808        | 0.035*       |
| H6B | 0.4952        | 0.2238        | 0.3769        | 0.035*       |
| C31 | 0.09343 (14)  | 0.1616 (3)    | 0.10249 (16)  | 0.0270 (4)   |
| C32 | 0.06268 (16)  | 0.2203 (3)    | 0.00253 (17)  | 0.0319 (5)   |
| H32 | 0.1073        | 0.2192        | -0.0489       | 0.038*       |
| C33 | -0.03398 (17) | 0.2810 (3)    | -0.02180 (18) | 0.0372 (5)   |
| H33 | -0.0550       | 0.3189        | -0.0901       | 0.045*       |
| C34 | -0.09930 (17) | 0.2861 (3)    | 0.05327 (19)  | 0.0374 (5)   |
| H34 | -0.1647       | 0.3281        | 0.0366        | 0.045*       |
| C35 | -0.06820 (17) | 0.2291 (4)    | 0.15351 (19)  | 0.0412 (6)   |
| H35 | -0.1124       | 0.2341        | 0.2053        | 0.049*       |
| C36 | 0.02774 (17)  | 0.1648 (4)    | 0.17807 (18)  | 0.0371 (5)   |
| H36 | 0.0481        | 0.1234        | 0.2459        | 0.045*       |
|     |               |               |               |              |

### Atomic displacement parameters $(Å^2)$

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|--------------|--------------|--------------|--------------|--------------|--------------|
| Se3 | 0.02667 (13) | 0.02833 (14) | 0.03375 (14) | 0.00167 (8)  | -0.00011 (9) | -0.00736 (8) |
| Cl2 | 0.0381 (3)   | 0.0241 (3)   | 0.0338 (3)   | 0.0085 (2)   | -0.0032 (2)  | 0.0045 (2)   |
| O1  | 0.0286 (7)   | 0.0197 (7)   | 0.0374 (8)   | -0.0010 (6)  | 0.0037 (6)   | -0.0028 (6)  |
| O4  | 0.0291 (8)   | 0.0170 (7)   | 0.0455 (9)   | 0.0032 (5)   | 0.0093 (7)   | 0.0031 (6)   |
| C1  | 0.0271 (10)  | 0.0206 (9)   | 0.0263 (10)  | 0.0002 (7)   | 0.0022 (8)   | 0.0000 (7)   |
| C2  | 0.0227 (9)   | 0.0176 (9)   | 0.0256 (9)   | 0.0036 (7)   | 0.0020 (7)   | 0.0014 (7)   |
| C3  | 0.0213 (8)   | 0.0217 (9)   | 0.0265 (9)   | 0.0001 (7)   | 0.0024 (7)   | -0.0015 (7)  |
| C4  | 0.0245 (9)   | 0.0214 (9)   | 0.0338 (11)  | -0.0019 (8)  | 0.0056 (8)   | 0.0041 (8)   |
| C5  | 0.0364 (11)  | 0.0289 (10)  | 0.0284 (11)  | 0.0004 (9)   | 0.0008 (9)   | 0.0084 (9)   |
| C6  | 0.0336 (11)  | 0.0267 (10)  | 0.0267 (10)  | -0.0010 (8)  | -0.0061 (8)  | 0.0018 (8)   |
| C31 | 0.0237 (9)   | 0.0242 (10)  | 0.0326 (10)  | -0.0014 (8)  | -0.0005 (8)  | -0.0034 (8)  |
| C32 | 0.0332 (11)  | 0.0314 (11)  | 0.0311 (11)  | -0.0013 (9)  | 0.0025 (9)   | 0.0006 (9)   |
| C33 | 0.0372 (12)  | 0.0383 (12)  | 0.0343 (12)  | -0.0014 (10) | -0.0068 (10) | 0.0013 (10)  |
| C34 | 0.0286 (10)  | 0.0386 (13)  | 0.0436 (13)  | 0.0046 (9)   | -0.0041 (9)  | -0.0071 (10) |

| C35             | 0.0312 (11)   | 0.0530 (15) | 0.0401 (13) | 0.0021 (11) | 0.0066 (10) | -0.0037 (11) |
|-----------------|---------------|-------------|-------------|-------------|-------------|--------------|
| C36             | 0.0332 (11)   | 0.0472 (14) | 0.0305 (11) | 0.0009 (10) | 0.0004 (9)  | 0.0007 (10)  |
|                 |               |             |             |             |             |              |
| Geometric parar | neters (Å, °) |             |             |             |             |              |
| Se3—C3          |               | 1.9669 (19) | C5—         | C6          | 1.52        | 25 (3)       |
| Se3—C31         |               | 1.919 (2)   | C5—         | H5A         | 0.98        | 800          |
| C2—Cl2          |               | 1.7990 (19) | C5—         | H5B         | 0.98        | 800          |
| C101            |               | 1.429 (2)   | С6—         | H6A         | 0.98        | 800          |
| O1—H1           |               | 0.8300      | C6—         | H6B         | 0.98        | 800          |
| C4—O4           |               | 1.434 (3)   | C31–        | C32         | 1.38        | 33 (3)       |
| O4—H4           |               | 0.8300      | C31–        | C36         | 1.38        | 33 (3)       |
| C1—C6           |               | 1.521 (3)   | C32–        | -C33        | 1.38        | 86 (3)       |
| C1—C2           |               | 1.532 (3)   | C32–        | -H32        | 0.94        | 00           |
| C1—H1A          |               | 0.9900      | C33–        | C34         | 1.37        | 74 (3)       |
| С2—С3           |               | 1.523 (3)   | C33–        | -H33        | 0.94        | 00           |
| С2—Н2           |               | 0.9900      | C34–        | -C35        | 1.38        | 33 (3)       |
| C3—C4           |               | 1.527 (3)   | C34–        | –H34        | 0.94        | 00           |
| С3—Н3           |               | 0.9900      | C35–        | -C36        | 1.38        | 36 (3)       |
| C4—C5           |               | 1.518 (3)   | C35–        | –H35        | 0.94        | 00           |
| C4—H4A          |               | 0.9900      | C36–        | –H36        | 0.94        | 00           |
| C3—Se3—C31      |               | 101.31 (8)  | С6—         | С5—Н5А      | 109         | .3           |
| C1-01-H1        |               | 109.5       | C4—         | С5—Н5В      | 109         | .3           |
| C4—O4—H4        |               | 109.5       | С6—         | С5—Н5В      | 109         | .3           |
| O1—C1—C6        |               | 110.96 (16) | H5A-        | —С5—Н5В     | 108         | .0           |
| O1—C1—C2        |               | 111.13 (16) | C1—         | C6—C5       | 110         | .63 (17)     |
| C6—C1—C2        |               | 110.52 (16) | C1—         | С6—Н6А      | 109         | .5           |
| O1—C1—H1A       |               | 108.0       | С5—         | С6—Н6А      | 109         | .5           |
| C6—C1—H1A       |               | 108.0       | C1—         | С6—Н6В      | 109         | .5           |
| C2—C1—H1A       |               | 108.0       | С5—         | С6—Н6В      | 109         | .5           |
| C3—C2—C1        |               | 112.21 (16) | H6A-        | —С6—Н6В     | 108         | .1           |
| C3—C2—Cl2       |               | 110.39 (13) | C32–        | -C31-C36    | 119         | .85 (19)     |
| C1—C2—Cl2       |               | 108.25 (13) | C32–        | -C31-Se3    | 117         | .70 (16)     |
| С3—С2—Н2        |               | 108.6       | C36–        | -C31-Se3    | 122         | .11 (16)     |
| C1—C2—H2        |               | 108.6       | C31–        | -C32-C33    | 119         | .9 (2)       |
| Cl2—C2—H2       |               | 108.6       | C31–        | -С32—Н32    | 120         | .0           |
| C2—C3—C4        |               | 111.71 (15) | C33–        | -С32—Н32    | 120         | .0           |
| C2—C3—Se3       |               | 113.03 (13) | C34–        | -C33-C32    | 120         | .4 (2)       |
| C4—C3—Se3       |               | 107.17 (13) | C34–        | -С33—Н33    | 119         | .8           |
| С2—С3—Н3        |               | 108.3       | C32–        | -С33—Н33    | 119         | .8           |
| С4—С3—Н3        |               | 108.3       | C33–        | C34C35      | 119         | .6 (2)       |
| Se3—C3—H3       |               | 108.3       | C33–        | -С34—Н34    | 120         | .2           |
| O4—C4—C5        |               | 111.15 (17) | C35–        | -С34—Н34    | 120         | .2           |
| O4—C4—C3        |               | 107.65 (16) | C36–        | -C35-C34    | 120         | .4 (2)       |
| C5—C4—C3        |               | 111.23 (17) | C36–        | -С35—Н35    | 119         | .8           |
| O4—C4—H4A       |               | 108.9       | C34–        | -С35—Н35    | 119         | .8           |
| С5—С4—Н4А       |               | 108.9       | C35–        | -C36-C31    | 119         | .8 (2)       |
| C3—C4—H4A       |               | 108.9       | C35–        | -C36-H36    | 120         | .1           |
| C4—C5—C6        |               | 111.59 (17) | C31–        | -С36—Н36    | 120         | .1           |

C4—C5—H5A 109.3

Hydrogen-bond geometry (Å, °)

| D—H···A                                                                    | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |  |
|----------------------------------------------------------------------------|-------------|--------------|--------------|------------|--|
| O1—H1···O4 <sup>i</sup>                                                    | 0.83        | 1.91         | 2.737 (2)    | 174        |  |
| O4—H4···O1 <sup>ii</sup>                                                   | 0.83        | 1.91         | 2.744 (2)    | 178        |  |
| Symmetry codes: (i) $-x+1$ , $y+1/2$ , $-z+1/2$ ; (ii) $x$ , $y-1$ , $z$ . |             |              |              |            |  |





